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Abstract—Autonomous AI agents increasingly perform tasks
with financial impacts, yet lack verifiable mechanisms to track
value creation on-chain. This accountability gap hinders trust
and the development of robust agent economies. We introduce
Proof of Effective Intelligence (PoEI), a crypto-economic incentive
protocol that enables agents to hold autonomous smart accounts
that transparently record earnings, costs, and performance met-
rics. PoEI formalizes the effectiveness of the agent as a net utility
over time, encapsulated in on-chain balances. We detail the design
of autonomous smart accounts, off-chain signed communication
interfaces, a slashing mechanism for verifiably malicious behavior
governed by a ”digital court,” and an autonomous bribe-demand
feature enabling agents to solicit bounties from users via a shared
queue. We implemented a PoEI prototype on the Sepolia testnet,
integrating LangChain-based agents with EVM smart contracts.
In experimental scenarios including trading, portfolio manage-
ment and auditing, PoEI-enabled agents consistently outperform
their baseline counterparts, with net utility gains exceeding 25%
in key tasks. Our analysis highlights trade-offs between gas costs
and incentive alignment, addresses security considerations such
as oracle manipulation and sophisticated collusion, and outlines
the complex ethical and scalability implications of financially
autonomous AI. PoEI paves the way for a new class of financially
grounded AI agents, fostering transparent and trustless agent
economies.

Index Terms—Autonomous agents, cryptoeconomics, smart
accounts, incentive design, blockchain, AI agents, mechanism
design, agent accountability

I. INTRODUCTION

Autonomous AI agents are transitioning from academic cu-
riosities to active participants in digital economies, performing
tasks with direct financial consequences, from algorithmic
trading to decentralized asset management. However, this
transition exposes a critical flaw in existing infrastructure:
the absence of a verifiable, trustless mechanism to measure
and reward an agent’s true economic contribution. Without
transparent on-chain records of an agent’s financial decisions,
profits, and costs, it is impossible to reliably verify the value
it creates, align its actions with human objectives, or build a
scalable economy of interacting agents.

To address this accountability gap, we propose Proof of
Effective Intelligence (PoEI), a crypto-economic framework
that provides autonomous agents with dedicated smart ac-
counts. These accounts serve as immutable ledgers, recording
all earnings, operational costs, and performance metrics in
a tamper-proof manner. Our research asks: Can a crypto-
economic incentive structure measurably improve the effec-

tiveness of AI agents by making their performance transparent
and financially consequential?

We explore this question by designing and implementing
the core components of PoEI: autonomous smart accounts
that function as agents’ financial identities; a secure off-chain
communication interface for gas-efficient operation; a robust
reward and slashing pipeline to enforce protocol rules; and
a novel ”autonomous bribe-demand” module that fosters a
dynamic market for task improvement and verification.

We build a proof-of-concept on the Sepolia testnet, integrat-
ing LangChain-based agents with Solidity smart contracts, and
evaluate PoEI-enabled agents against baselines in a series of
economic tasks. Our results show that by directly linking an
agent’s actions to its on-chain financial state, PoEI significantly
improves net revenue and overall utility.

The contributions of this paper are as follows.

• We formalize agent effectiveness with a utility function
that captures net revenue and operational costs, providing
a clear, quantifiable performance metric.

• We design a robust, slashing-based reward pipeline gov-
erned by a dispute resolution mechanism inspired by
”digital court” models to ensure transparent and fair
incentive alignment.

• We introduce an autonomous bribe-demand mechanism,
a novel feature where agents can solicit bounties for
follow-on work, fostering emergent client discovery, and
a competitive market for quality assurance.

• We implement a complete PoEI prototype on an EVM-
compatible testnet, demonstrating the practical integration
of modern AI agent frameworks with blockchain technol-
ogy.

• We empirically evaluate PoEI in various agent tasks,
showing its efficacy in increasing the net utility of the
agent by more than 25% and providing a detailed analysis
of the security, economic, and ethical dimensions of the
system.

The rest of this paper is organized as follows. Section II
reviews related work. Section III presents the PoEI proto-
col design in detail. Section IV details our implementation.
Section V describes our experimental methodology. Section
VI reports our results. Section VII provides an expanded
discussion of security, economic, and ethical considerations.
Finally, Section VIII concludes and outlines future research
directions.



II. BACKGROUND & RELATED WORK

A. AI-Agent Frameworks and Incentive Mechanisms

Frameworks like LangChain and LangGraph [3] provide
powerful abstractions for building autonomous agents, but
they are economically agnostic, lacking native structures for
managing agent incentives. In parallel, the multi-agent rein-
forcement learning (MARL) community has developed algo-
rithms for incentive alignment. Lowe et al. [1] introduced
MADDPG for mixed cooperative-competitive environments.
More recently, Akatsuka et al. [2] demonstrated that a ”man-
ager agent” that algorithmically adjusts incentives can increase
agent rewards by over 20%, highlighting the performance
gains achievable with explicit incentive schemes, which PoEI
aims to provide in a decentralized context.

B. Blockchain AI and Compute Marketplaces

The vision of a decentralized AI economy is not new.
The Golem Network established one of the first decentral-
ized marketplaces for computing power [4]. SingularityNET
created a self-organizing AI marketplace where agents can
monetize their capabilities and, crucially, programmatically
hire other agents for tasks—a core tenet of the PoEI vision [5].
Fetch.ai introduced a comprehensive economic framework for
autonomous agents, complete with token stakes and micro-
payments [6]. While these platforms validate the demand
for decentralized AI services, they often focus on the high-
level marketplace infrastructure. PoEI complements this work
by focusing on the granular, performance-based incentive
alignment and on-chain accountability of each individual agent
within such an economy.

C. Economic and Game-Theoretic Foundations

Incentive alignment in agentic systems is a classic principal-
agent problem, where information asymmetry creates moral
hazard [7]. Mechanism design theory offers a formal toolkit
for creating protocols where rational agents are incentivized
to act truthfully and in line with system-wide objectives [8].
The emergence of blockchain has created a new frontier for
this field. Research into ”mechanism design with blockchain
enforcement” explores how smart contracts can serve as an
impartial ”digital court,” creating self-enforcing agreements
that guarantee commitment and truthful reporting without
reliance on a central authority [9]. This concept provides a
strong theoretical underpinning for PoEI’s slashing and reward
pipeline.

III. PROOF OF EFFECTIVE INTELLIGENCE PROTOCOL
DESIGN

A. Formal Model of Effectiveness

To measure performance, we must first define it. We posit
that an agent’s effectiveness is its ability to generate net value.
We denote an agent i’s on-chain balance at time t as Bi(t).
Over a period ∆t, the net revenue is:

∆Ri = Bi(t+∆t)−Bi(t) (1)
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Fig. 1. The high-level architecture of the Proof of Effective Intelligence (PoEI)
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This revenue is offset by operational costs, Ci, which include
transaction fees, oracle data fees, and payments for services
from other agents. The agent’s utility, Ui, is therefore its profit:

Ui = ∆Ri − Ci (2)

This simple but powerful utility function serves as the agent’s
primary objective. For tasks where quality or accuracy is
paramount and not directly captured by revenue, the model
can be extended:

Ui = αAi + β(∆Ri − Ci) (3)

where Ai is a measurable accuracy metric (e.g., from a
validation oracle), and α, β are weighting parameters set by
governance to balance financial gain with task quality.

B. Autonomous Smart Accounts

Each AI agent is instantiated with a dedicated smart ac-
count, created via a factory contract using the ‘CREATE2‘ op-
code for deterministic addressing. This account is the agent’s
financial identity on the blockchain, storing:
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• Agent identifier (its address) and a type tag (e.g.,
”Trader,” ”Auditor”).

• Current balance and a timestamped history of balances.
• Key performance metrics, such as tasks completed and

accuracy logs.

The factory immutably binds the agent’s off-chain public key
to the smart account’s ‘owner‘ field, ensuring that only the
agent can authorize transactions.

C. Reward Pipeline and Slashing Mechanism

The economic incentives of PoEI are enforced through a
continuous reward and slashing cycle managed by a ‘Reward-
Manager‘ contract.

1) Defining Malicious Behavior: Slashing is reserved for
verifiably malicious or protocol-violating behavior, not mere
underperformance. Defining ”malice” is critical and context-
dependent. Drawing on threat models like CSA MAE-
STRO [13], we define specific, detectable violations for each
agent type:

• Trading Agent: Malice includes on-chain wash trading
(detectable by analyzing transaction loops) or specific
forms of oracle manipulation.
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cation process.

• Audit Agent: Malice is defined as submitting a clean
audit report for a smart contract that verifiably contained
a publicly disclosed critical vulnerability at the time of
the audit.

• Research Agent: Malice includes providing verifiably
false information (e.g., incorrect historical data when
queried against a known dataset) or engaging in sybil
attacks to manipulate bounties.

2) Adjudication and Dispute Resolution: When a malicious
act is flagged, a simple majority vote by token holders is
insufficient and prone to manipulation. We propose a multi-
stage dispute resolution process inspired by ”digital court”
models [9]:

1) Flagging: Any user can stake a bond to flag a potential
violation, providing on-chain evidence (e.g., transaction
hashes proving wash trading).

2) Response Period: The accused agent has a window to
submit counter-evidence.

3) Adjudication: The case is sent to a decentralized panel
of expert jurors, who are randomly selected from a
pool of high-reputation stakeholders (e.g., other high-
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performing agents or human experts who have staked
significant capital). Jurors vote on the outcome, and
those who vote with the majority are rewarded, while
those in the minority may lose part of their stake,
incentivizing honest evaluation.

If found guilty, the agent is slashed via ‘slashAgent(agent,
severity, evidence)‘, which reduces its balance by a penalty
proportional to the act’s severity.

D. Autonomous Bribe Demand

To foster a dynamic and competitive ecosystem, PoEI intro-
duces an Autonomous Bribe Demand feature. After completing
a task (e.g., a code audit), an agent can publish a summary
and a hash of its results to a shared on-chain queue. This acts
as an open invitation for peer review. Other agents can then
”bribe” the original user for the right to perform a secondary
audit or extend the work. They do this by staking tokens as a
bounty via ‘raiseBounty(agent, amount, taskId)‘. The user can
accept a bounty, creating a competitive market where agents
are incentivized to find flaws in each other’s work, thereby
increasing the quality and reliability of the final product and
enabling skilled agents to discover new clients.

Fig. 5. Cumulative Net Revenue over Episodes for PoEI vs. Baseline, showing
an avg. 28% uplift for PoEI agents by episode 100.

IV. METHODOLOGY & EXPERIMENTAL SETUP

A. Testnet Environment

The prototype is deployed on the Sepolia EVM testnet. We
use Hardhat v2.x for development, mock ERC-20 tokens for
rewards, and Chainlink Price Feeds as the primary oracle. Gas
prices and block times (≈ 15 s) follow Sepolia defaults.

B. Agent Tasks and Baseline Design

We evaluate four agent types: Trading, Portfolio-
Management, Audit/Forensic, and Research Assistant.
For each, we compare a PoEI-enabled Agent (with a smart
account and subject to PoEI rules) against a Baseline Agent
(with identical core logic but only off-chain, non-verifiable
reward tracking).

C. Experimental Procedure

Each experiment runs for N = 100 episodes, with each
episode spanning M = 200 Sepolia blocks (≈ 50min). PoEI
agents batch and submit performance reports every k = 10
blocks. Initial agent balances are 1, 000 mock tokens, with
trading agents capped at 100 tokens of spending per episode
to contain risk.

D. Evaluation Metrics

We record:
• Net Utility (Ui): As defined in Section III-A, Ui =

∆Ri−Ci, measured in mock tokens per episode. This is
our primary performance metric.

• Latency (Li): Average time from action to on-chain
settlement.

• Cost per Action (Caction): Total gas cost normalized by
transaction count.

• Bounty Conversion Rate: The percentage of primary
tasks that successfully generate a funded bounty from
another agent or user.

V. RESULTS & EVALUATION

Our evaluation across N = 100 episodes demonstrates
that the on-chain incentive mechanism of PoEI measurably
improves agent performance compared to the baseline.

A. Net Revenue and Utility

The core finding is that PoEI agents achieve significantly
higher net utility. The direct, on-chain financial feedback loop
forces agents to more rapidly adapt their strategies to maxi-
mize profit and minimize costs. Figure 5 plots the cumulative
net revenue, showing that PoEI agents achieve approximately
**28% higher net revenue** by the end of the experiment.
This aligns with findings from related research where explicit
incentive mechanisms in multi-agent systems have yielded
performance gains of 20-25% [2].



TABLE I
LATENCY, COST, AND UTILITY COMPARISON (AVERAGED PER EPISODE)

Agent Type Li (s) Caction (Gwei) Ui (mock tokens)
Trading (PoEI) 20 150 8.5
Trading (Baseline) 5 0 6.0
Portfolio (PoEI) 25 120 9.1
Portfolio (Baseline) 5 0 6.5
Audit (PoEI) 30 100 7.2
Audit (Baseline) 5 0 5.0
Research (PoEI) 15 80 8.0
Research (Baseline) 5 0 5.5

Fig. 6. Average Utility per Episode for PoEI vs. Baseline, demonstrating a
consistent and significant performance uplift for PoEI agents.

Table I summarizes the average performance per episode.
While PoEI agents incur non-zero gas costs (Caction), the
dramatic increase in their revenue-generating effectiveness
leads to substantially higher net utility (Ui). For example, the
PoEI Trading Agent achieves a utility of 8.5 mock tokens per
episode, a 41% improvement over the baseline’s 6.0, even after
accounting for gas costs.

B. Utility Improvement Over Time

Figure 6 shows the average utility per episode. PoEI agents
consistently outperform their baseline counterparts, achieving
an average utility improvement of **35%** across all tasks
by the final episodes. This demonstrates that crypto-economic
incentives are highly effective at aligning agent behavior with
the goal of maximizing net financial gain. Furthermore, the
bribe-demand mechanism achieved a bounty conversion rate
of 12%, indicating successful creation of a secondary market
for task verification and improvement.

VI. DISCUSSION

The promising results of PoEI must be contextualized within
a broader discussion of its risks, limitations, and implications.

A. Security and Trust

1) Oracle Manipulation: PoEI’s reliance on oracles for
performance data is a critical security consideration. Sophis-
ticated oracle manipulation, as demonstrated by the $117M
Mango Markets exploit where an attacker manipulated price
feeds to drain liquidity [10], remains a significant threat. A
single fallback oracle is insufficient. A robust system must
employ a defense-in-depth strategy, including decentralized
oracle networks (e.g., Chainlink), the use of Time-Weighted
Average Prices (TWAPs) to smooth volatility, and on-chain
circuit breakers that automatically halt protocol functions if
price feeds deviate beyond a sane threshold.

2) Collusion and Sybil Attacks: Rational, profit-
maximizing agents may attempt to collude to game the
system. For instance, a group of agents could agree to
upvote each other’s performance or collude to unfairly
slash a competitor. While mechanisms from auction theory,
such as VCG auctions, can deter simple forms of collusion
in bidding, they may not be sufficient for the complex,

long-term interactions in PoEI. Preventing sophisticated
collusion requires both advanced cryptographic techniques
and robust governance, such as the ”digital court” model, to
make coordination costly and detectable.

B. Economic Viability and Scalability

The economic viability of PoEI hinges on a simple inequal-
ity: the utility gain from incentive alignment must exceed the
gas costs of on-chain operations. Our batching mechanism
amortizes these costs, but a fundamental trade-off remains.
As noted in a NBER working paper on blockchain economics,
the core value proposition of a decentralized system—trustless
consensus—must outweigh its inherent verification and net-
working costs [11].

Scaling PoEI from a testnet to a mainnet environment with
high gas fees presents a significant challenge. Achieving cost-
effectiveness at scale will almost certainly require moving
most operations to a Layer-2 rollup (e.g., Arbitrum, Optimism)
or, potentially, deploying PoEI as its own application-specific
chain (validium) to control the fee environment.

C. Ethical and Regulatory Landscape

1) Algorithmic Accountability and Control: Granting finan-
cial autonomy to AI agents raises profound ethical questions
about control and accountability. What happens if an agent,
in optimizing its utility function, causes unintended market
harm? Human-in-the-loop safeguards and ”kill switches” are
essential, but a more foundational solution lies in building
auditable accountability into the agent’s core design. Frame-
works like ETHOS, which uses Web3 technologies to create
a transparent ”Ethos” for agents to define and audit their
operational principles, offer a promising path forward [12].

2) Tokenomics and Systemic Risk: The design of the PoEI
reward token is paramount. A poorly designed economic
model can create perverse incentives or prove unsustainable,
leading to a system collapse, as famously demonstrated by
the Terra/Luna UST de-pegging event. A stable PoEI econ-
omy requires a token with clear utility (e.g., for staking,
governance, paying fees), a carefully managed supply, and
a sustainable rewards model that does not rely on hyper-
inflationary emissions.

3) Legal and Compliance Challenges: The regulatory land-
scape for decentralized autonomous organizations (DAOs) and
their associated tokens is nascent and uncertain. Depending
on the jurisdiction and the specifics of its governance, a PoEI
network and its token holders could face legal liability, for
instance, by being classified as an unincorporated general
partnership. The transparency of PoEI’s on-chain logs is a
double-edged sword, offering auditability for compliance but
also potentially exposing participants to regulatory scrutiny.

VII. CONCLUSION & FUTURE WORK

In this paper, we introduced Proof of Effective Intelligence
(PoEI), a crypto-economic protocol that endows autonomous
AI agents with on-chain smart accounts to transparently track
and reward effective performance. We formalized agent ef-
fectiveness via a net utility function and designed the core



components of the PoEI ecosystem, including a novel bribe-
demand mechanism. Our prototype, implemented on the Se-
polia testnet, demonstrates that PoEI-enabled agents achieve
significantly higher net utility—over 25% in key tasks—and
foster a dynamic market for task improvement compared to
baseline agents.

PoEI represents a foundational step towards building a
robust, trustless economy of autonomous agents. However,
significant work remains. Future research will focus on:

• Advanced Governance: Implementing a fully-featured,
collusion-resistant ”digital court” for adjudicating slash-
ing disputes, moving from our conceptual design to a
working implementation with staked expert jurors.

• Layer-2 and Rollup Integration: Migrating the PoEI
framework to a high-throughput, low-cost Layer-2 solu-
tion to ensure its economic viability at scale.

• Formal Verification of Agent Behavior: Researching
methods for the formal verification of AI agent actions
on-chain. This would create unambiguous, cryptographi-
cally secure evidence for reward and slashing decisions,
reducing reliance on complex dispute resolution.

• Sustainable Tokenomic Modeling: Designing and sim-
ulating a robust token economic model for a PoEI token
that ensures long-term incentive alignment, manages in-
flation, and funds ecosystem development.

• Richer, Ethically-Aligned Performance Metrics: Ex-
tending the utility model to incorporate task-specific
accuracy, robustness, and ethical compliance metrics,
guided by frameworks like ETHOS, to ensure agents
optimize for holistic value, not just profit.
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